Ich war mit dem Clio beim TÜV.
Telefonisch hatte der Besitzer im Vorwege schon angefragt, ob die Chance besteht, den Clio bei einer normalen TÜV-Station prüfen zu lassen.
Mit den maximalen Unterlagen von Renault bin ich dann losgefahren.
Der Clio selbst hat ein paar Mängel, die aber relativ einfach behoben werden könnten.
Nur die Plakette bekommt er nicht.
Der Umbau von NiCd auf LiFePo4 ist nicht ausreichend dokumentiert.
Dem TÜV fehlen z.B. Abnahmeprotokolle von einem Sachverständigen zu Einbau und Batterie.
Und das auf deutsch, nicht englisch oder chinesisch.
Für den Besitzer heißt es also, auf nach Hannover oder Essen, um das Fahrzeug von der Fachgruppe Elektromobilität abnehmen zu lassen.
Umbau eines VW New Beetle Benziner in ein umweltfreundliches Elektrofahrzeug
Projektstart: 03.06.2009 - TÜV: 07.12.2010
Rebuild: 24.04.2011 - 15.07.2011
Posts mit dem Label Renault électrique werden angezeigt. Alle Posts anzeigen
Posts mit dem Label Renault électrique werden angezeigt. Alle Posts anzeigen
Dienstag, 17. September 2013
Montag, 9. September 2013
Zellentausch und Einblicke
Samstag habe ich die vermeintlich kleinste Zelle des Akkupacks ermittelt, ausgebaut und gegen eine "Reservezelle" getauscht.
Der Clio hatte zwei lose Zellen im Kofferraum, die der Verkäufer mitgegeben hat.
Leider beide nicht mehr mit den ursprünglichen 200Ah gesegnet, die eine sogar deutlich rund, was auf eine starke Überladung / Entladung hindeutet.
So habe ich mich an den Kofferraum gemacht. Deckel hoch, der übrigens mit Klebeband an seinem Platz gehalten wird, und einen Blick auf die ersten Zellen geworfen.
OK, die erste Lage ist liegend eingebaut.
Was als erstes ins Auge viel, war der geringe Abstand zu den Batteriepolen der gegenüberliegenden Zellen und deren "Isolation". Ein sehr dünner Kunststoff-Hohlwandkarton, wie er im Verpackungsbereich üblich ist, schützt die Zellen vor Berührung.
Überspitzt gesagt, eine etwas dickere Plastiktüte. Und das bei recht enger Bauweise.
Ich habe hier eine nichtleitende 3mm Kunststoffplatte eingesetzt.
Da die Batteriewanne eine nach innen umgelegte Kante hat, kann man nicht einfach die Zellen nach oben hin herausnehmen, sondern muss unter höchster Vorsicht Kontakte lösen, und mind. zwei Zellen gleichzeitig herausfummeln.
Keine wirklich schöne Arbeit.
Wenn die ersten zwei Zellen erst einmal ausgebaut sind, geht es deutlich leichter.
Allerdings ist weiterhin große Vorsicht angesagt, denn die M14 Schrauben benötigen einen 22er Schlüssel, der allein schon den halben Kofferraum ausfüllt ;-)
Also, bloß kein Kurzschluss verursachen!
Die Zellen selbst sind mit breiten Verbindern aus vermutlich Edelstahl oder vielleicht auch verzinntem Metal verbunden. In der Mitte mit einer Biegung, damit evtl. Bewegungen im Pack ausgegelichen werden können. Das sieht schon mal gut aus.
Auf dem Bild sind auch die Unterlegscheiben zu sehen, die dort keinen Sinn machen.
Die Pole bestehen aus unterschiedlichen Materialien, Kupfer und Aluminium, reagieren mit anderen Metallen und sorgen so u.U. für Korrosion, höhere Übergangswiderstände oder unterschiedliche Ausdehnung unter Wärme.
Um das zu umgehen bzw zu minimieren, kann man entsprechende Materialien nutzen, wie hier die U-Scheiben.
Allerdings bringt das so wie im Bild gezeigt gar nichts, da zwischen dem Kupferpol und der Kupferscheibe noch die Edelstahlbrücke sitzt.
Zumindest haben die meisten Anschlüsse einen Federring, für einen dauerhaften Halt des M14 Bolzen.
Dort wo die fertigen, festen Verbinder nicht passen, wurden Kabelbrücken verbaut.
Diese wurden leider nur aus 35 mm² Erdungskabel hergestellt, ohne Schrumpfschlauch, teils mit sich lösendem Isolierband und mit viel zu kleinen Kabelschuhen.
Die hier verbauten Rohrkabelschuhe waren mal mit einer Öffnung für M6 Bolzen und wurden aufgebohrt auf M14!
Nicht nur der Grat an der Bohrung ist dabei schlecht für die Verbindung, sondern auch die viel zu kleine Auflagefläche für den zu erwartenden Strom kann hier ein Problem verursachen.
Wo ich konnte, habe ich die Brücken gegen 50 mm² H01N2-D Leitung und entsprechenden M14 Kabelschuhen getauscht.
Nächste Auffälligkeit: Die Leitungen zum BMS, die für die Spannungsmessung verantwortlich sind, liegen unter der Stromführenden Leitung.
Das sollte man nicht so verbauen!
Zum einen gehört die Stromführende Leitung immer direkt auf den Batteriepol und das mit möglichst großer Fläche! Zum anderen verfälscht die Messung in der Stromführender Leitung das Ergebnis der Spannungsmessung.
Besser so:
Zu guter Letzt noch zwei Dinge. Zum einen konnte ich auf der Kunststofffolie eine etwas schmierige Ablagerung feststellen, die voraussichtlich durch das ausgasen von Zellen erfolgt ist, die Überladen oder Überentladen wurden.
Da an dieser Stelle die Zellen 6 und 7 liegen, vermute ich das die runde Extrazelle aus dem Kofferraum hier ihr Elektrolyt herausgeblasen hat. Die Beschriftung würde darauf hindeuten.
Zum anderen ist der Batterietrog mit Nieten zusammengehalten, die innen deutlich überstehen und z.T. spitz sind. Sie bohren sich also über die Zeit in die Leitungen und Zellen, wenn es ganz schlecht läuft.
Alles in allem also ein arbeitsreiches Wochenende mit einer Menge Erkenntnisse.
Bleibt abzuwarten, ob der Austausch mit einer größeren Reichweite belohnt wird.
Der Clio hatte zwei lose Zellen im Kofferraum, die der Verkäufer mitgegeben hat.
Leider beide nicht mehr mit den ursprünglichen 200Ah gesegnet, die eine sogar deutlich rund, was auf eine starke Überladung / Entladung hindeutet.
So habe ich mich an den Kofferraum gemacht. Deckel hoch, der übrigens mit Klebeband an seinem Platz gehalten wird, und einen Blick auf die ersten Zellen geworfen.
OK, die erste Lage ist liegend eingebaut.
Was als erstes ins Auge viel, war der geringe Abstand zu den Batteriepolen der gegenüberliegenden Zellen und deren "Isolation". Ein sehr dünner Kunststoff-Hohlwandkarton, wie er im Verpackungsbereich üblich ist, schützt die Zellen vor Berührung.
Überspitzt gesagt, eine etwas dickere Plastiktüte. Und das bei recht enger Bauweise.
Ich habe hier eine nichtleitende 3mm Kunststoffplatte eingesetzt.
Da die Batteriewanne eine nach innen umgelegte Kante hat, kann man nicht einfach die Zellen nach oben hin herausnehmen, sondern muss unter höchster Vorsicht Kontakte lösen, und mind. zwei Zellen gleichzeitig herausfummeln.
Keine wirklich schöne Arbeit.
Wenn die ersten zwei Zellen erst einmal ausgebaut sind, geht es deutlich leichter.
Allerdings ist weiterhin große Vorsicht angesagt, denn die M14 Schrauben benötigen einen 22er Schlüssel, der allein schon den halben Kofferraum ausfüllt ;-)
Also, bloß kein Kurzschluss verursachen!
Die Zellen selbst sind mit breiten Verbindern aus vermutlich Edelstahl oder vielleicht auch verzinntem Metal verbunden. In der Mitte mit einer Biegung, damit evtl. Bewegungen im Pack ausgegelichen werden können. Das sieht schon mal gut aus.
Auf dem Bild sind auch die Unterlegscheiben zu sehen, die dort keinen Sinn machen.
Die Pole bestehen aus unterschiedlichen Materialien, Kupfer und Aluminium, reagieren mit anderen Metallen und sorgen so u.U. für Korrosion, höhere Übergangswiderstände oder unterschiedliche Ausdehnung unter Wärme.
Um das zu umgehen bzw zu minimieren, kann man entsprechende Materialien nutzen, wie hier die U-Scheiben.
Allerdings bringt das so wie im Bild gezeigt gar nichts, da zwischen dem Kupferpol und der Kupferscheibe noch die Edelstahlbrücke sitzt.
Zumindest haben die meisten Anschlüsse einen Federring, für einen dauerhaften Halt des M14 Bolzen.
Dort wo die fertigen, festen Verbinder nicht passen, wurden Kabelbrücken verbaut.
Diese wurden leider nur aus 35 mm² Erdungskabel hergestellt, ohne Schrumpfschlauch, teils mit sich lösendem Isolierband und mit viel zu kleinen Kabelschuhen.
Die hier verbauten Rohrkabelschuhe waren mal mit einer Öffnung für M6 Bolzen und wurden aufgebohrt auf M14!
Nicht nur der Grat an der Bohrung ist dabei schlecht für die Verbindung, sondern auch die viel zu kleine Auflagefläche für den zu erwartenden Strom kann hier ein Problem verursachen.
Wo ich konnte, habe ich die Brücken gegen 50 mm² H01N2-D Leitung und entsprechenden M14 Kabelschuhen getauscht.
Nächste Auffälligkeit: Die Leitungen zum BMS, die für die Spannungsmessung verantwortlich sind, liegen unter der Stromführenden Leitung.
Das sollte man nicht so verbauen!
Zum einen gehört die Stromführende Leitung immer direkt auf den Batteriepol und das mit möglichst großer Fläche! Zum anderen verfälscht die Messung in der Stromführender Leitung das Ergebnis der Spannungsmessung.
Besser so:
Zu guter Letzt noch zwei Dinge. Zum einen konnte ich auf der Kunststofffolie eine etwas schmierige Ablagerung feststellen, die voraussichtlich durch das ausgasen von Zellen erfolgt ist, die Überladen oder Überentladen wurden.
Da an dieser Stelle die Zellen 6 und 7 liegen, vermute ich das die runde Extrazelle aus dem Kofferraum hier ihr Elektrolyt herausgeblasen hat. Die Beschriftung würde darauf hindeuten.
Zum anderen ist der Batterietrog mit Nieten zusammengehalten, die innen deutlich überstehen und z.T. spitz sind. Sie bohren sich also über die Zeit in die Leitungen und Zellen, wenn es ganz schlecht läuft.
Alles in allem also ein arbeitsreiches Wochenende mit einer Menge Erkenntnisse.
Bleibt abzuwarten, ob der Austausch mit einer größeren Reichweite belohnt wird.
Problemlösung und 2. Testfahrt
Nach ein paar Tagen Arbeit, kann ich mal wieder einen Zwischenstand zum Renailt Clio Projekt geben.
Es gab mehrere Probleme zu lösen:
- Radlager tauschen (der Clio hörte sich an wie ein Diesel!)
- Bordbatterie hat Unterspannung
- Zellen angleichen
- Reichweite erneut ermitteln
Der Radlagertausch war nicht das Problem. Eine Werkstatt, die auch Fachbetrieb für Elektrofahrzeuge und Hybridfahrzeuge ist, hat das Radlager problemlos getauscht.
Im Vorfeld habe ich die Info bekommen, dass hier mit Vorsicht an den Antriebswellen gearbeitet werden muss, da die Dichtungen des Automatikgetriebes wohl nicht mehr so einfach zu bekommen sind.
Mit dieser Information und einem neuen FAG Radlager habe ich dei Werkstatt beauftragt.
Der Unterschied war mehr als deutlich! Der Wagen ist wieder ein E-Auto :-)
Die Bordbatterie hatte zweimal Unterspannung (6V).
Während des Ladevorgangs, oder wenn die Zündung an ist, wird diese über die UCL mit Strom versorgt und geladen, aber wie es aussieht, reicht dies nicht aus und zudem war die Batterie wohl noch die erste von 1996 :-)
Also: Ausgetauscht.
Das behebt noch nicht das Problem mit der Ladung.
Mein Vorschlag ist es hier einen DC/DC Wandler zu montieren, der parallel zur 12V Bordbatterie angeklemmt wird und mit 13,8V für eine Erhaltungsladung sorgt, solange der Wagen nicht geladen wird.
Z.B. ein MeanWell SD350D-12
Um die Zellen anzugleichen, habe ich das Lingoo BMS erstmal auf ordentliche Werte eingestellt.
So wird bei 3,600V die Ladung unterbrochen, bis die Ruhespannung wieder unter 3,380V gefallen ist.
Das schützt die Zelle mit der höchsten Spannung vor Überladung und ermöglicht es dem Besitzer das Fahrzeug auch über Nacht an der Steckdose zu lassen, ohne das Batteriepaket zu kochen.
Das funktioniert soweit sehr gut.
Um sicherzusteleln, dass alle Zellen nach oben hin ausbalanciert und voll sind, habe ich im Anschluss über die Balancer-Anschlüsse jede einzelne Zelle geladen.
Hier ist auf den geringen Querschnitt zu achten, der keine hohen Ströme zulässt!
Mit dem Junsi iCharger 3010B habe ich dies erledigt.
Einstellung: Fast Charge, 10A, coV 3,65V, Balanceranschluss genutzt.
Bei dem Ladestand läuft der Junsi etwa 20 Minuten/Zelle und endet bei 2A Ladestrom.
Durchschnittlich 900mA sind in die Zellen geflossen, fünf davon waren auffällig.
Nach einem knappen Tag Ruhezeit waren die 40 Zellspannungen um 0,049V zusammen.
Viel besser geht es nicht.
Also rauf auf die Bahn und Reichweitentest starten.
Die ersten 100km waren Landstraße (20%), Schnellstraße (20%), Autobahn (60%).
Geschwindigkeit: 80-90km/h, meist 85km/h.
Licht, Scheibenwischer, z.T. Heizung, kaum Rekuperation
Für 95,4km habe ich 104Ah gebraucht.
1,09Ah/km
Der zweite Abschnitt war ausschließlich Landstraße.
Geschwindigkeit: 80-85km/h, meist 80km/h.
Licht, gelegentlich Rekuperation
Für 56,9km habe ich 49Ah gebraucht.
0,86Ah/km
Insgesamt bin ich also 152,3km weit gekommen.
Verglichen mit unserer ersten Testfahrt sind das nur 4km weiter.
Das Limit gibt die schwächste Zelle vor und das ist Die Zelle 1 aus dem Modul 2.
Diese hat sich wieder als erste gemeldet und sollte somit eine Kapazität von 153Ah haben bei ø 70A Belastung.
Ein bisschen Enttäuschung konnte ich mir nicht verkneifen. Ich hatte gehofft, auf min. 170Ah zu kommen.
Also wird das nächste Problem sein, die kleinste Zelle zu tauschen.
Es gab mehrere Probleme zu lösen:
- Radlager tauschen (der Clio hörte sich an wie ein Diesel!)
- Bordbatterie hat Unterspannung
- Zellen angleichen
- Reichweite erneut ermitteln
Der Radlagertausch war nicht das Problem. Eine Werkstatt, die auch Fachbetrieb für Elektrofahrzeuge und Hybridfahrzeuge ist, hat das Radlager problemlos getauscht.
Im Vorfeld habe ich die Info bekommen, dass hier mit Vorsicht an den Antriebswellen gearbeitet werden muss, da die Dichtungen des Automatikgetriebes wohl nicht mehr so einfach zu bekommen sind.
Mit dieser Information und einem neuen FAG Radlager habe ich dei Werkstatt beauftragt.
Der Unterschied war mehr als deutlich! Der Wagen ist wieder ein E-Auto :-)
Die Bordbatterie hatte zweimal Unterspannung (6V).
Während des Ladevorgangs, oder wenn die Zündung an ist, wird diese über die UCL mit Strom versorgt und geladen, aber wie es aussieht, reicht dies nicht aus und zudem war die Batterie wohl noch die erste von 1996 :-)
Also: Ausgetauscht.
Das behebt noch nicht das Problem mit der Ladung.
Mein Vorschlag ist es hier einen DC/DC Wandler zu montieren, der parallel zur 12V Bordbatterie angeklemmt wird und mit 13,8V für eine Erhaltungsladung sorgt, solange der Wagen nicht geladen wird.
Z.B. ein MeanWell SD350D-12
Um die Zellen anzugleichen, habe ich das Lingoo BMS erstmal auf ordentliche Werte eingestellt.
So wird bei 3,600V die Ladung unterbrochen, bis die Ruhespannung wieder unter 3,380V gefallen ist.
Das schützt die Zelle mit der höchsten Spannung vor Überladung und ermöglicht es dem Besitzer das Fahrzeug auch über Nacht an der Steckdose zu lassen, ohne das Batteriepaket zu kochen.
Das funktioniert soweit sehr gut.
Um sicherzusteleln, dass alle Zellen nach oben hin ausbalanciert und voll sind, habe ich im Anschluss über die Balancer-Anschlüsse jede einzelne Zelle geladen.
Hier ist auf den geringen Querschnitt zu achten, der keine hohen Ströme zulässt!
Mit dem Junsi iCharger 3010B habe ich dies erledigt.
Einstellung: Fast Charge, 10A, coV 3,65V, Balanceranschluss genutzt.
Bei dem Ladestand läuft der Junsi etwa 20 Minuten/Zelle und endet bei 2A Ladestrom.
Durchschnittlich 900mA sind in die Zellen geflossen, fünf davon waren auffällig.
Nach einem knappen Tag Ruhezeit waren die 40 Zellspannungen um 0,049V zusammen.
Viel besser geht es nicht.
Also rauf auf die Bahn und Reichweitentest starten.
Die ersten 100km waren Landstraße (20%), Schnellstraße (20%), Autobahn (60%).
Geschwindigkeit: 80-90km/h, meist 85km/h.
Licht, Scheibenwischer, z.T. Heizung, kaum Rekuperation
Für 95,4km habe ich 104Ah gebraucht.
1,09Ah/km
Der zweite Abschnitt war ausschließlich Landstraße.
Geschwindigkeit: 80-85km/h, meist 80km/h.
Licht, gelegentlich Rekuperation
Für 56,9km habe ich 49Ah gebraucht.
0,86Ah/km
Insgesamt bin ich also 152,3km weit gekommen.
Verglichen mit unserer ersten Testfahrt sind das nur 4km weiter.
Das Limit gibt die schwächste Zelle vor und das ist Die Zelle 1 aus dem Modul 2.
Diese hat sich wieder als erste gemeldet und sollte somit eine Kapazität von 153Ah haben bei ø 70A Belastung.
Ein bisschen Enttäuschung konnte ich mir nicht verkneifen. Ich hatte gehofft, auf min. 170Ah zu kommen.
Also wird das nächste Problem sein, die kleinste Zelle zu tauschen.
Montag, 26. August 2013
Reichweite weniger als angegeben, aber so wie erwartet
Nachdem ich am Freitag und Samstag die Zellen über das BMS angeglichen habe, habe ich den Clio auf die Straße gebracht, um die Reichweite zu ermitteln.
Plan: sobald die erste Zelle 2,7V zeigt ist das Maximum erreicht. Nach 150 Kilometern war es dann soweit. Was viel wichtiger ist, jetzt weiß ich wie die Zellen sich verhalten und um welche ich mich besonders kümmern muss.
Insgesamt sind es sieben Zellen, die ich näher betrachten werde.
Danach geht es erneut auf die Bahn.
Meiner Einschätzung nach werden wir aber auch mit sehr gut angeglichenen Zellen nur an max. 180 Kilometer kommen. Wir werden sehen.
Plan: sobald die erste Zelle 2,7V zeigt ist das Maximum erreicht. Nach 150 Kilometern war es dann soweit. Was viel wichtiger ist, jetzt weiß ich wie die Zellen sich verhalten und um welche ich mich besonders kümmern muss.
Insgesamt sind es sieben Zellen, die ich näher betrachten werde.
Danach geht es erneut auf die Bahn.
Meiner Einschätzung nach werden wir aber auch mit sehr gut angeglichenen Zellen nur an max. 180 Kilometer kommen. Wir werden sehen.
Freitag, 23. August 2013
Kapazitätsmessung beginnt
Nachdem ich gestern eine halbe Stunde mit einem Renault Clio electrique Wissenden telefoniert habe, bin ich guter Dinge, dass man den Wagen "retten" kann.
Allerdings sind die ersten Ziele erst einmal das BMS wieder zu aktivieren (Display ist noch schwarz) und die Zellen auf ein Niveau zu bringen.
Was ebenfalls wichtig ist: sind alle Zellen noch OK und welche Kapazität ist maximal nutzbar.
Also werden die Amperestunden unter Last ermittelt.
Bottom Balancing ist hier nicht sinnvoll, da die Zellen durch das BMS auf dem oberen Ladungsniveau gehalten werden.
Allerdings sind die ersten Ziele erst einmal das BMS wieder zu aktivieren (Display ist noch schwarz) und die Zellen auf ein Niveau zu bringen.
Was ebenfalls wichtig ist: sind alle Zellen noch OK und welche Kapazität ist maximal nutzbar.
Also werden die Amperestunden unter Last ermittelt.
Bottom Balancing ist hier nicht sinnvoll, da die Zellen durch das BMS auf dem oberen Ladungsniveau gehalten werden.
Montag, 19. August 2013
Renault Clio électrique - Elektroauto
Manchmal passieren Dinge, die sind nur schwer zu erklären.
So steht zum Beispiel gerade ein Renault Clio aus den 90er Jahren bei mir in der Garage zu "Reparatur".
Aber fangen wir mit der Geschichte am Anfang an.
In der letzten Woche bekam ich einen Anruf eines Elektrofahrers, der gern bei uns sein E-Auto aufladen wollte.
Kein Problem. Bei uns darf man das :-)
Ich war nicht zu Hause, daher rief ich irgendwann meine Frau an, ob alles in Ordnung sei.
"Mit der Steckdose schon, aber ich glaube der Fahrer hat ein Problem mit dem Auto."
OK. Dann beeile ich mich mal und versuche zu helfen, wenn es geht.
Zu Hause angekommen steht ein Renault Clio électrique in meinem Carport und lädt über zwei Leitungen seinen Akku auf. So weit so gut.
Der Besitzer hatte das Fahrzeug gerade aus Dänemark überführen wollen und festgestellt, dass der Wagen nicht "lockere 200km schafft", sondern trotz schonend sparsamer Fahrweise bei etwas über 170km stehenblieb.
Ich stellte ein paar Fragen zu dem Akku und warf einen Blick auf den Ladevorgang.
40 LiFePo4 Zellen von Hi-Power mit jeweils 200Ah sind verbaut. Nominell also etwa 25kWh an Energie an Bord.
Aus der Erinnerung habe ich kurz überschlagen, dass der Wagen etwa 14-18kWh/100km verbrauchen müsste, da sind "lockere" 200km schon recht optimistisch, die 170-180km schon eher realistisch.
Der Renault wurde von den ursprünglichen Nickel-Cadmium (NiCd) Akkus umgerüstet auf Lithium-Eisen-Phosphat (LiFePo4), inkl. eines LiGoo Batteriemanagementsystem (BMS).
Auf einem Monitor in der Mittelkonsole sind die einzelnen Zellen zu erkennen und hier war nichts gutes zu erkennen!
Einzelne Zellen (fünf Stück) waren bereits über 3,9V Zellspannung und die Ladegeräte pumpten munter weiter 23A in den Akku.
Also schnell das Ladegerät ausgesteckt und die Werte angesehen.
Die eingestellten Werte waren in meinen Augen grausam gewählt!
Bei 3,900V sollte das Ladegerät ausschalten, bei 3,45V schaltet es wieder ein.
Als Erinnerung an alle: 3,65V ist die "normale" Ladeendspannung für LiFePo4 Zellen, 3,38V die Spannung, bei der eine LiFePo4 Zelle als voll gilt.
Jede Spannung über 3,38V lädt weiterhin den Akku!
Somit werden die Zellen im Renault so lange überladen, bis irgendwann einmal eine Abschaltung oder ein Defekt auftritt!
Das nächste Problem: die Zellen sind deutlich auseinandergedriftet.
Während die höchste Zelle schon 3,932V anzeigt, ist die niedrigste Zelle noch bei 3,366V.
Ein ausgeglichener Batteriepack sieht anders aus :-/
Mein Tipp war es, den Wagen umgehend zurückzubringen, aber leider war der Privatverkäufer schon bei den ersten Anzeichen einer Rückgabe sehr abweisend und uneinsichtig.
Eine Rückgabe wurde ausgeschlossen und nur über ein Gericht zu klären.
Das klingt für mich nach einer üblen Abzocke und das hier jemand froh war, dass das Fahrzeug vom Hof ist. Wir werden es wohl nicht erfahren, denn der Besitzer hat sich entschlossen nicht gutes Geld dem schlechten hinterherzuwerfen und das Problem selbst zu lösen.
Ja und da komme ich dann wieder ins Spiel.
Der Wagen steht nun bei mir in der Garage, der Besitzer braucht Hilfe und ich kann nicht fassen, dass jemand so dreist ist, solch ein Fahrzeug so weiterzuverkaufen.
In den nächsten Wochen werdet ihr hier also einiges über den Renault lesen können, wie ich mich mit dem BMS auseinandersetze und die Zellen ausmesse und balanciere.
Einen Tipp an alle, die sich ein E-Fahrzeug kaufen wollen:
Nehmt euch jemanden mit, der sich schon länger mit der Materie beschäftigt, oder fragt nach, auf was man achten sollte und was beim Verkäufer hinterfragt werden sollte.
Das schützt nicht vor versteckten Mängeln, hilft aber vielleicht die ganz groben Fehler zu vermeiden.
So steht zum Beispiel gerade ein Renault Clio aus den 90er Jahren bei mir in der Garage zu "Reparatur".
Aber fangen wir mit der Geschichte am Anfang an.
In der letzten Woche bekam ich einen Anruf eines Elektrofahrers, der gern bei uns sein E-Auto aufladen wollte.
Kein Problem. Bei uns darf man das :-)
Ich war nicht zu Hause, daher rief ich irgendwann meine Frau an, ob alles in Ordnung sei.
"Mit der Steckdose schon, aber ich glaube der Fahrer hat ein Problem mit dem Auto."
OK. Dann beeile ich mich mal und versuche zu helfen, wenn es geht.
Zu Hause angekommen steht ein Renault Clio électrique in meinem Carport und lädt über zwei Leitungen seinen Akku auf. So weit so gut.
Der Besitzer hatte das Fahrzeug gerade aus Dänemark überführen wollen und festgestellt, dass der Wagen nicht "lockere 200km schafft", sondern trotz schonend sparsamer Fahrweise bei etwas über 170km stehenblieb.
Ich stellte ein paar Fragen zu dem Akku und warf einen Blick auf den Ladevorgang.
40 LiFePo4 Zellen von Hi-Power mit jeweils 200Ah sind verbaut. Nominell also etwa 25kWh an Energie an Bord.
Aus der Erinnerung habe ich kurz überschlagen, dass der Wagen etwa 14-18kWh/100km verbrauchen müsste, da sind "lockere" 200km schon recht optimistisch, die 170-180km schon eher realistisch.
Der Renault wurde von den ursprünglichen Nickel-Cadmium (NiCd) Akkus umgerüstet auf Lithium-Eisen-Phosphat (LiFePo4), inkl. eines LiGoo Batteriemanagementsystem (BMS).
Auf einem Monitor in der Mittelkonsole sind die einzelnen Zellen zu erkennen und hier war nichts gutes zu erkennen!
Einzelne Zellen (fünf Stück) waren bereits über 3,9V Zellspannung und die Ladegeräte pumpten munter weiter 23A in den Akku.
Also schnell das Ladegerät ausgesteckt und die Werte angesehen.
Die eingestellten Werte waren in meinen Augen grausam gewählt!
Bei 3,900V sollte das Ladegerät ausschalten, bei 3,45V schaltet es wieder ein.
Als Erinnerung an alle: 3,65V ist die "normale" Ladeendspannung für LiFePo4 Zellen, 3,38V die Spannung, bei der eine LiFePo4 Zelle als voll gilt.
Jede Spannung über 3,38V lädt weiterhin den Akku!
Somit werden die Zellen im Renault so lange überladen, bis irgendwann einmal eine Abschaltung oder ein Defekt auftritt!
Das nächste Problem: die Zellen sind deutlich auseinandergedriftet.
Während die höchste Zelle schon 3,932V anzeigt, ist die niedrigste Zelle noch bei 3,366V.
Ein ausgeglichener Batteriepack sieht anders aus :-/
Mein Tipp war es, den Wagen umgehend zurückzubringen, aber leider war der Privatverkäufer schon bei den ersten Anzeichen einer Rückgabe sehr abweisend und uneinsichtig.
Eine Rückgabe wurde ausgeschlossen und nur über ein Gericht zu klären.
Das klingt für mich nach einer üblen Abzocke und das hier jemand froh war, dass das Fahrzeug vom Hof ist. Wir werden es wohl nicht erfahren, denn der Besitzer hat sich entschlossen nicht gutes Geld dem schlechten hinterherzuwerfen und das Problem selbst zu lösen.
Ja und da komme ich dann wieder ins Spiel.
Der Wagen steht nun bei mir in der Garage, der Besitzer braucht Hilfe und ich kann nicht fassen, dass jemand so dreist ist, solch ein Fahrzeug so weiterzuverkaufen.
In den nächsten Wochen werdet ihr hier also einiges über den Renault lesen können, wie ich mich mit dem BMS auseinandersetze und die Zellen ausmesse und balanciere.
Einen Tipp an alle, die sich ein E-Fahrzeug kaufen wollen:
Nehmt euch jemanden mit, der sich schon länger mit der Materie beschäftigt, oder fragt nach, auf was man achten sollte und was beim Verkäufer hinterfragt werden sollte.
Das schützt nicht vor versteckten Mängeln, hilft aber vielleicht die ganz groben Fehler zu vermeiden.
Abonnieren
Posts (Atom)